Search results for "electronic properties and materials"

showing 8 items of 8 documents

Unravelling the Intertwined Atomic and Bulk Nature of Localised Excitons by Attosecond Spectroscopy

2021

The electro-optical properties of most semiconductors and insulators of technological interest are dominated by the presence of electron-hole quasi-particles, called excitons. The manipulation of excitons in dielectrics has recently received great attention, with possible applications in different fields including optoelectronics and photonics. Here, we apply attosecond transient reflection spectroscopy in a sequential two-foci geometry and observe sub-femtosecond dynamics of a core-level exciton in bulk MgF2 single crystals. Furthermore, we access absolute phase delays, which allow for an unambiguous comparison with theoretical calculations. Our results show that excitons surprisingly exhi…

optoelectronicsAttosecondphotonicsAttosecond dynamicsGeneral Physics and AstronomyPhysics::Optics02 engineering and technologysemiconductorsTransient reflectivity01 natural sciencesSettore FIS/03 - Fisica Della MateriaUltrafast photonicsPhysicsMultidisciplinaryCondensed matter physicsQCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyfemtosecond optical Stark effectdielectricsStark effectFemtosecondsymbols0210 nano-technologyPhysics - OpticsElectronic properties and materialsattosecondexcitonsScienceExcitonFOS: Physical sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCondensed Matter::Materials Sciencesymbols.namesakeMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesPhysics::Atomic and Molecular Clusters010306 general physicsSpectroscopyCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryGeneral ChemistryCore excitonselectro-optical propertiesSemiconductorPhotonicsbusinessUltrashort pulseelectron-hole quasi-particlesOptics (physics.optics)
researchProduct

The electronic properties of SrTiO3-δ with oxygen vacancies or substitutions

2021

The authors would like to thank R. Dittmann for useful discussions, T. Kocourek, O. Pacherova, S. Cichon, V. Vetokhina, and P. Babor for their contributions to sample preparation and characterization. The authors (M.T., A.D.) acknowledge support from the Czech Science Foundation (Grant No. 19-09671S), the European Structural and Investment Funds and the Ministry of Education, Youth and Sports of the Czech Republic through Programme “Research, Development and Education” (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16-019/0000760). This study was partly supported by FLAG-ERA JTC project To2Dox (L.R. and E.K.). Calculations have been performed on the LASC Cluster in the Institute of Solid State Phy…

Ferroelectrics and multiferroicsMaterials scienceElectronic properties and materialsBand gapScienceOxide02 engineering and technologyElectronic structure010402 general chemistry01 natural sciencesArticlechemistry.chemical_compoundSurfaces interfaces and thin filmsThin filmPerovskite (structure)MultidisciplinaryCondensed matter physicsbusiness.industry4. EducationQR021001 nanoscience & nanotechnology0104 chemical sciencesSemiconductorchemistryStrontium titanate:NATURAL SCIENCES [Research Subject Categories]MedicineCrystallite0210 nano-technologybusinessScientific Reports
researchProduct

Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials

2020

Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density fun…

Electron mobilityMaterials scienceElectronic properties and materialsBand gapSciencenanomateriaalitGeneral Physics and AstronomyNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticleNanomaterialsNanoclustersnanorakenteetpuolijohteetAtomCluster (physics)electronic properties and materialslcsh:Sciencechemistry.chemical_classificationMultidisciplinaryNanowiresQGeneral ChemistryPolymer021001 nanoscience & nanotechnology0104 chemical sciencesnanowireschemistryNanoparticlesnanoparticlesDensity functional theorylcsh:Q0210 nano-technologyNature Communications
researchProduct

Mixed topological semimetals driven by orbital complexity in two-dimensional ferromagnets

2018

The concepts of Weyl fermions and topological semimetals emerging in three-dimensional momentum space are extensively explored owing to the vast variety of exotic properties that they give rise to. On the other hand, very little is known about semimetallic states emerging in two-dimensional magnetic materials, which present the foundation for both present and future information technology. Here, we demonstrate that including the magnetization direction into the topological analysis allows for a natural classification of topological semimetallic states that manifest in two-dimensional ferromagnets as a result of the interplay between spin-orbit and exchange interactions. We explore the emerg…

0301 basic medicineElectronic properties and materialsMagnetismScienceFOS: Physical sciencesGeneral Physics and AstronomyPosition and momentum space02 engineering and technologyTopologyArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMagnetizationMagnetic properties and materialsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Topological insulatorslcsh:SciencePhysicsCondensed Matter - Materials ScienceMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsQMaterials Science (cond-mat.mtrl-sci)General ChemistryFermion021001 nanoscience & nanotechnologySemimetal030104 developmental biologyDomain wall (magnetism)FerromagnetismTopological insulatorFerromagnetismlcsh:QCondensed Matter::Strongly Correlated Electronsddc:5000210 nano-technologyNature Communications
researchProduct

Ultra-fast direct growth of metallic micro- and nano-structures by focused ion beam irradiation

2019

An ultra-fast method to directly grow metallic micro- and nano-structures is introduced. It relies on a Focused Ion Beam (FIB) and a condensed layer of suitable precursor material formed on the substrate under cryogenic conditions. The technique implies cooling the substrate below the condensation temperature of the gaseous precursor material, subsequently irradiating with ions according to the wanted pattern, and posteriorly heating the substrate above the condensation temperature. Here, using W(CO)6 as the precursor material, a Ga+ FIB, and a substrate temperature of -100 °C, W-C metallic layers and nanowires with resolution down to 38 nm have been grown by Cryogenic Focused Ion Beam Indu…

Electronic properties and materialsMaterials scienceNANOTECNOLOGIANanowirelcsh:Medicine02 engineering and technologySubstrate (electronics)CRYO-FIB01 natural sciencesFocused ion beamArticle//purl.org/becyt/ford/1 [https]Electrical resistivity and conductivity0103 physical sciencesNano-Electronic devicesElectrical measurementsIrradiationlcsh:Science010302 applied physicsMultidisciplinaryNanowiresbusiness.industrylcsh:R//purl.org/becyt/ford/1.3 [https]021001 nanoscience & nanotechnologyddc:NANODEPOSITOSOptoelectronicslcsh:QFIBID0210 nano-technologybusinessLayer (electronics)Scientific Reports
researchProduct

Conjugation with carbon nanotubes improves the performance of mesoporous silicon as Li-ion battery anode

2020

Carbon nanotubes can be utilized in several ways to enhance the performance of silicon-based anodes. In the present work, thermally carbonized mesoporous silicon (TCPSi) microparticles and single-walled carbon nanotubes (CNTs) are conjugated to create a hybrid material that performs as the Li-ion battery anode better than the physical mixture of TCPSi and CNTs. It is found out that the way the conjugation is done has an essential role in the performance of the anode. The conjugation should be made between negatively charged TCPSi and positively charged CNTs. Based on the electrochemical experiments it is concluded that the positive charges, i.e., excess amine groups of the hybrid material i…

energy science and technologyEnergy storageElectronic properties and materialspiibatteriesenergy storageEnergy science and technologyelektroditlcsh:RlitiumioniakutCarbon nanotubes and fullereneslcsh:MedicineArticleBatteriescarbon nanotubes and fullereneslcsh:Qelectronic properties and materialsnanoputketlcsh:SciencekomposiititScientific Reports
researchProduct

Long-range vortex transfer in superconducting nanowires

2019

Under high-enough values of perpendicularly-applied magnetic feld and current, a type-II superconductor presents a fnite resistance caused by the vortex motion driven by the Lorentz force. To recover the dissipation-free conduction state, strategies for minimizing vortex motion have been intensely studied in the last decades. However, the non-local vortex motion, arising in areas depleted of current, has been scarcely investigated despite its potential application for logic devices. Here, we propose a route to transfer vortices carried by non-local motion through long distances (up to 10 micrometers) in 50nm-wide superconducting WC nanowires grown by Ga+ Focused Ion Beam Induced Deposition.…

0301 basic medicineElectronic properties and materialsNanowirelcsh:MedicineArticleSuperconducting properties and materials03 medical and health sciencessymbols.namesake0302 clinical medicineElectrical resistance and conductanceCondensed Matter::Superconductivitylcsh:ScienceSuperconductivityPhysicsMultidisciplinaryCondensed matter physicsNanowireslcsh:RFísicaVorticityThermal conductionVortexMagnetic field030104 developmental biologysymbolslcsh:QEngineering sciences. TechnologyLorentz force030217 neurology & neurosurgery
researchProduct

Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide.

2019

Van der Waals materials offer a wide range of atomic layers with unique properties that can be easily combined to engineer novel electronic and photonic devices. A missing ingredient of the van der Waals platform is a two-dimensional crystal with naturally occurring out-of-plane luminescent dipole orientation. Here we measure the far-field photoluminescence intensity distribution of bulk InSe and two-dimensional InSe, WSe2 and MoSe2. We demonstrate, with the support of ab-initio calculations, that layered InSe flakes sustain luminescent excitons with an intrinsic out-of-plane orientation, in contrast with the in-plane orientation of dipoles we find in two-dimensional WSe2 and MoSe2 at room-…

0301 basic medicineMaterials sciencePhotoluminescenceElectronic properties and materialsExcitonScienceGeneral Physics and Astronomychemistry.chemical_elementPhysics::Optics02 engineering and technologyTwo-dimensional materials7. Clean energyGeneral Biochemistry Genetics and Molecular BiologyArticleCrystal03 medical and health sciencessymbols.namesakeCondensed Matter::Materials SciencePhysics::Atomic and Molecular ClustersPhysics::Atomic Physicslcsh:ScienceMultidisciplinarybusiness.industryCondensed Matter::OtherQGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectDipole030104 developmental biologySemiconductorchemistrysymbolsOptoelectronicslcsh:Qvan der Waals forcePhotonics0210 nano-technologybusinessIndiumNature communications
researchProduct